Saturday, February 01, 2014

Long-Term, Student-Centered

 STEM Research Project



           Teachers modeling the behaviors of patience, commitment and risk-taking demonstrate to their students some of the essential personal attributes needed to complete long-term research projects.  It is from this basis where we begin the quest to achieve a 21st century caliber education for all students.

     During this fall semester of 2013, students in physics class worked through some of the preliminary research procedures like brainstorming,  constructing experimental designs and formulating testable hypothesis, while readying themselves for the final performance-driven outcomes derived through experimentation.  The goal of this project is to employ focused research on the production of alternative sources of energy or related investigations, while solving problems and presenting solutions.  Students develop evidence-based reason skills that will ultimately showcase their educational achievement in physics.  

     It is called Understanding by design. The idea is to initially address the ultimate learning goals that need to be achieved by the students and then design curriculum initiatives to prepare students for their final test in physics.  This is not a uniformly written or scanned ACT style exam, but a test of competency as learned members within this institution of learning that we call high school.  Since September students have worked through a process of systematic preparation and development of the skills necessary to do scientific inquiry. This STEM Research Process is student-centered and requires long-term commitment to obtain desired outcomes.  From idea generation to a focus upon specific topics or issues,  the students transcend toward a design model or methodology which provides critical steps necessary to take on the challenges of scientific research.

     By facilitating an organized investigation process, without teacher guided step-by-step procedures, it allows students to be more creative and develop a real sense of exploration and ownership of the project.  The STEM Research Process, tied to a teacher’s commitment and patience to let the process emerge, will create a 21st century learning environment that includes the following: time on task, experience real scientific exploration and investigation, seize opportunities to be creative and think critically, develop ownership and value in the chosen project goals and development of essential personal attributes like openness and collaboration.  These are fundamental reasoning skills that foster real learning in the 21st century science classroom.

     The long-term research projects, placed squarely within the current physics curriculum, helps to reach the educational outcomes in the science classroom by providing a learning environment that is creative, collaborative and geared toward evidenced-based rational thought.  Learning comes alive and grows with all its complexities, forms and relationships.  Much like the challenges these students will face in the near future in the real world.  This innovative science curriculum helps the school to evolve into a much sought after “institution of learning” nurturing the creative and thoughtful process of inquiry and problem solving for all students.  It is science education at its best!

 This spring semester students in physics class will initiate their scientific investigations, gather data, challenge their hypothesis, analyze and interpret evidence-based results and present their findings at a district-wide community science fair.  This project-based model for learning science develops readiness skills to ask relevant and meaningful questions, research possible solutions and work in teams of students gaining new understanding while preparing for 21st century life.

No comments: