Followers

Loading...

Thursday, June 08, 2017




Physics, Climate Change and the pursuit of the three-legged stool.

What does the future hold for our children studying science, being educated and embracing new technologies at school?  Reflecting upon this important issue is a continual process similar to learning science as a continual process of experimentation and analysis.

Project-based science requires innovative curriculum, supportive science equipment and open-ended formative and summative assessment of student learning.  Content in subject matters is a driving force for learning and in executing performance by students in the classroom.  Students embracing the learning process, as the means to increase self-efficacy, is the goal of any educator to increase student’s cognitive abilities and problem solving skills.

The three-legged stool is in reference to simultaneous efforts to reduce the level of carbon dioxide in the atmosphere.  Carbon sequestration, energy conservation and alternative sources of energy are the three supportive venues addressing the need to reduce the concentration of carbon dioxide in the atmosphere.  Inquiry into these three efforts provide resources and data for students to make decisions and formulate logical and reasoned arguments.

Students in physics classes have the unique opportunity to inquire and investigate each of these three efforts to mitigate carbon dioxide in the atmosphere.  Studying physics provide learning opportunities that will house practical applications of concepts learned in physics.  Utilizing science equipment in the physics lab, to build and test prototypes, analyze motion, measure thermal energy and investigating efficiency, are the essential building blocks supporting project-based learning in the classroom.

Energy is a focal point in the physics curriculum and student come to appreciate the value of what they have learned by having the opportunity to solve challenging problems that requiring creative solutions.   The transfer of energy within a closed system is an important concept helping students to understand how sources of energy can be directed, efficiently, to achieve outcomes like making electricity or doing work.  

Wave motion is another means through which students can understand the flow of energy from one location to another by means that do not require doing work.  Solar radiation provides a means to transfer energy from the sun into thermal energy that can be used to generate heat in a greenhouse.  The practical application of concepts in physics to solve problems is sustained as a primary educational goal in science.

A project-based curriculum that seamlessly transition from one concept in physics to another prepares students to be critical thinkers and problem solvers.  Increased cognitive abilities of learners is the ultimate goal for the teacher in the classroom. The skill and ability to work effectively on projects, while solving problems and presenting results, are essential abilities for success in our modern society.

Once students understand the concepts of kinematics, force, work and other forms of energy, then they will develop the cognition to look at problems from many view points to discover and bring forth solutions.

Finally, climate change, and the breath and deep of this issue, will continue to offer students real-world problems to investigate and find solutions to these problems.  The physics of climate change and greenhouse warming of atmospheric gases is a result of the physics of particles in motion. There are fundamental inquiries that students in science class can experiment and probe to gather evidence and achieve outcomes. 

Students can utilize their understanding of science and the physics of energy to address this problem from three separate aspects, carbons sequestration, energy efficiency and alternative sources of energy.


Students design and construct new heating chamber to increase the efficiency of the transfer of light radiation into thermal energy.

S

Students experimenting, testing and gathering data on the transfer of light radiation into thermal energy.


Students investigating the quality of soil mediums as part of the Earth Stewardship Project and sequestration of carbon dioxide from the atmosphere.


Sunday, May 07, 2017



Project-Based Learning 
in the science classroom

Teaching to mainstream students in our public schools presents a host of challenges for teachers to overcome when educating students in the science classroom.  The pedagogy that educators develop to meet these challenges require an adaptive nature by which to implement curriculum (content, scope and sequence).  This methodology lends best to the conditions presented in the learning environment.  I believe these challenges facing teachers today require the most urgently needed changes in science education in American public schools.

After school programs, competitive science projects, gifted student programs and STEM related programs outside the realm of the 8 hour school day are where science projects currently hold sway.  Without question, I believe that project-based science needs to be part of the scope and sequence within a science curriculum.  I believe teachers can achieve a seamless transition between conceptual units in science through the implementation of project-based science initiatives embedded in the curriculum.  This 21st century model for education provides learning experiences that captivate minds and inspire intrinsic motivation to learn.  It supports in-depth and long-term learning experience where students can dwell upon and reflect on outcomes that are achieved in-line with performance-based expectations.

Getting students to engage in the learning process has never been more of a challenge than it is today in our schools.  Educational experiences, provided to students in science education, are moving toward performance-based models for learning and assessments.  There is no better performance-based model for learning than project-based educational initiatives that challenge students’ skills and abilities as a whole and not as piece-meal assessments of one aspect of one concept at a time in the curriculum.

Play, Passion and Purpose are at the center of excellent teaching and learning.  The interest in and ability, by students, to create new knowledge to solve new problems is the single most important skill that students must master today.  Successful innovators have mastered the ability to learn on their own “in the moment” and have the foresight to apply that knowledge in new ways. To be a successful science teacher you have to make it fun for kids and that means making it theirs.  Students have ownership over what they are learning and they develop a commitment and resilience to follow through on these discoveries.

















Friday, March 31, 2017



The Crescendo in the Science Classroom
The mindset of a learned student in the 21st century

You may laud music that draws you into a dreaminess state of mind or it can provide a stimulus for foot-stomping action.  Music carries with it an emotional content along with complexities and subtleties.  Music moves people and it is a pleasurable thing to experience.  It is a form of escapism for the mind.

Flow, as described by Mihály Csíkszentmihályi in his book on the psychology of optimal experience, details a similar experience of losing oneself in the moment, but this is now done within the realm of academics. Students become so engrossed in the event that time stops, focus becomes laser-like and the world around them seems distant.  This euphoric pleasurable learning mindset is an outcome of living experiences that swell, like a crescendo, and resonate with students emotionally and academically.

The moment, the crescendo, that all-encompassing event is what educators call the learning experience. Employing teaching and learning strategies in the classroom geared toward open-ended problem solving experiences, will ebb-and-flow their way toward this event and produce that moment for students to immerse themselves in learning.  Students, working on projects, forge forward with experimentation or toil over the analysis of data looking for relationships while collaborating within teams of students that discuss outcomes and evidence-based conclusions.

From the genesis of their education, students need to be enculturated in this new way of thinking. Initially, students experiment with what is obvious or well know, like gravity or heating matter, but learners have to eventually rethink their assumptions about the world that they inhabit by relying upon new evidence and new understanding creating broad sweeping mental images of the universe that they experience. There has to be an emotional investment by students to want to learn new outcomes and embrace the relevance of knowing and understanding science and its effects upon their lives. Project-based science is the means to this end result.

The current generation of K-12 students have not experienced coherent strategies, in the classroom, designed to develop critical thinking.  Currently, teachers and students are going through a tough learning curve to move pedagogy from rote memorization and standardized testing without understanding, toward a more realistic accounting of students that are now learning how to become more effective problem solvers.

We can only hold students accountable for what they have experienced in school and in life.  To change the way students learn is to change the expectations that we have for them in our classrooms.  Modeling this new way of thinking will increase intrinsic motivation of students to learn and perform and thereby change education forever.















Friday, December 30, 2016




MAGICAL

On the Wednesday before Christmas vacation students in my second hour physical science class went online, through Adobe Connect, with teachers and students from the countries of Morocco and Tunisia in the Middle East. This experience brought home the relevance of collaboration in science and it illuminates the benefits of developing international connections in the pursuit of greater knowledge and understanding.

Rachel Manley, our facilitator with the iEARN Network helped to smooth our transition into video conferencing as we began collaborative discussions with peers from the Middle East  regarding similar experimental results  achieved when testing soils.

First experience with online video conferencing seemed magical as Streamwood High School was projected world-wide and our new friends from the Middle East expressed genuine excitement and interest. Teachers were able to share their experiences in doing similar science projects and it aroused feelings of almost giddiness having the opportunity to talk to peers that have been email correspondents before this event!

Students from Streamwood High School had the opportunity to share experiences on the project along with providing some insight into the benefits of doing this scientific endevour. We finished this exchange of ideas by wishing everyone involved a Merry Christmas and our Muslim friends were elated and wished us in kind. Memorable. A moving experience between students at Streamwood and people of Islamic culture. Powerful!

Fundamentally, the Earth Stewardship Project, as part of the iEARN Bridge Program, provides educators with a truly unique opportunity to involve students in investigative and problem solving challenges, while helping them develop their cognitive abilities to effectively communicate and collaborate with peers from across the world. This process involves students conducting inquiry into unknown areas of science and it provides the challenge to critically assess scientific findings while determining the validity of results.

I believe that the creativity and innovation that is the hallmark of scientific investigation and understanding provide students with the essential experiences and challenges to prepare for their positions in the world.  The multidisciplinary nature of these collaborative inquiry and project-based learning experience lay an educational foundation that parallels the needs for global citizenship.  

Citizens living upon our planet, today, are more united than ever before through technological advances like cells phones and with respect to the need to tackle and solve world-wide problems like climate change, providing clean drinking water and in the production of food for a planet of over 7 billion people. We must pass on these learning opportunities to our students so they too can weigh in on solutions to these challenges and show the resilience to bring about real change in the world that they live in.








Friday, November 25, 2016



iEARN

The iEARN Environmental Bridge Project is a collaborative scientific investigation into physical aspects of soil that help contribute to the quality of the soil in local school environments.

This collaborative effort, called the Earth Stewardship Project,  lends will to the development of students’ analytical problem solving abilities and to their ability to effectively communicate with peers working on similar research throughout the world. 

This project is an educational initiative that focuses upon the development of students’ cognitive abilities and skills as global citizens in the 21st century.  

World citizens from Morocco, Algeria, Tunisia, Lebanon and the USA are sharing scientific data, experience and discussions on  investigations into the quality of local soils.  Students participating in the Earth Stewardship Project forum share outcomes, pictures and comments about their experiences.

The project stems from experimentation of four main factors that influence the quality of soil. The first factor is analysis of the percent composition of soil with respect to sand, silt and clay. These percent are determined through measurements of the thickness of striations of different substances in a soil mixture.  Another factor tested is the rate of water percolation through a mass of soil collected outside the school building. A third test is a determination of the ability of soil to hold water between particles (sand, silt and clay). Finally the density of soil mixtures are determined from analysis of percent composition and corresponding density of each substance layered within the ground.

Soil quality is a key indicator of the ability of an ecosystem to support habitats, crop production and maintain the structural integrity of a supportive environment.  During the project, students collaborate on their findings and discuss the rational for these outcomes including how soil quality might impact the process of growing food crops.

The international aspect of this project provide students with a unique challenge to test hypothesis, diagnosis and render judgement on experimental outcomes and take advantage of multiple perspectives of peers in the Middle East and across Northern Africa. Involvement in this project provide students with a tremendous opportunity to develop three types of cogitative processing abilities: conceptual, analytical and social.


Project-based science, and its proven capability to engage and intrinsically motivate student to perform, provide emphasis for life-long learning.  It strives for the highest realization of human potential. It engages deeper virtues and values such as compassion, courage, long-term commitment, resilience and perseverance. Students become inspired to perform and are more innovative and creative in their thinking.  This learning experience puts students into the “game” of solving real-world problems and they contribute to the success of meaningful outcomes.

The website for the iEARN Network is as follows:
https://iearn.org

Sunday, September 25, 2016



First one through the wall always gets bloodied, always!

There is an analogy between baseball and education in our public schools.  Here it is:
“I know you’ve taken it in the teeth out there, but the first guy through the wall — it always gets bloody. Always. It’s the threat of not just the way of doing business, but in their minds, it’s threatening the game. But really what it’s threatening is their livelihoods. It’s threatening their jobs. It’s threatening the way that they do things. And every time that happens, whether it’s the government or a way of doing business or whatever it is, the people who are holding the reins —  have their hands on the switch — they go batty … crazy.”  — Boston Red Sox owner John Henry in Moneyball.

Education in our public schools, now in the 21st century, needs to transcend into a new paradigm preparing students for challenges associated with new realities of a dynamically changing world.  I cannot stress enough that given how educators approach pedagogically the creation of learning environments for our kids, will eventually determine the economic, political and social viability of our world into this century.

The story of Billy Bean and his commitment to a new way of producing a viable baseball team has parallel analogies to teachers’ commitment to producing a viable educational experience for students in their classes. The inequity in our nations’ education system which now resembles an apartheid system of education, can be seriously upended through the creation of learning environments that produce, inquisitive and evidence-based inquiry experiences for our children.

Education in our public school is not about processing students through the education system to get them to graduate, it is about the learning process taking place for each student EVERYDAY.   Working within conceptual silos and parceling knowledge out in bits and elemental pieces is not addressing the needs of students in this century. Cross disciplinary and engaging real-world activities worth learning are central to the development of students’ cognitive abilities.

As an educator in science with over 20 plus years teaching, physics, chemistry and physical science I am not only an advocate for these new models of learning, but I bring to fruition, in my classrooms, learning experiences that are based upon students becoming deeply involved with project-based learning.

One of my projects called, The Earth Stewardship Project, provides students with opportunities to develop needed skills and abilities that successfully address challenges they face in school and in life.  I believe that an education system tailored toward the development of cognitive abilities would help students make sound judge, predict outcomes and engage in thoughtful experimentation.  Increased cognitive abilities allow students to design rational explanations of causation from observing occurrences and students work effectively in teams share their experiences, knowledge and understanding, while expressing their beliefs to an audience. 

Without opportunities to develop as a whole person and as a cognitive learner through project-based models for learning, the learning experience gets erased in short term memory and productive gains toward showing performance are lost.

Masters of the current conceptual silos (chemistry, physics and biology) continue to advocate for adherence to conventional approaches of learning, which include elemental and piece meal aspects of knowledge and understanding. Students assemble and build upon logical arguments that lead to comprehension, but the idea of usefulness and application to the bigger scheme of things always seem to fall short in these science disciplines.

A baseball metaphor illustration would show a person learning the rules and skills of the game of baseball, but never allowed to fully participate in a real game or even a scrimmage!  Without such an opportunity to play, then how does a person come to fully understand his or her level of competency? These learning experience for students become an uninspiring exercise as students are denied opportunity to perform.


My avocation for these changes in education to help our students meet 21st century challenges is often met with skepticism, consternation and disinterest. Efforts by progressive thinking educators to break the current learning mold and strike out in a manner of delivering learning experiences (project-based models of learning) that more clearly address  21st century skills and abilities continues to becoming a focal point of contention in education today.

Tuesday, July 12, 2016






2106 Physical Science and Physics Curricula Design and Implementation

Pedagogy and rational for learning science.

Purpose, Policies Programs and Practices

Translating the standards from policies to school programs (curricula) and classroom practices (instruction).
Purposes: aims, goals, and rationales.
Policies: standards, benchmarks, syllabi and action plans
Programs: curriculum material, resources, differentiation
Practices: classroom instruction, fundamental level of engagement

EXPECTATIONS

Clear, comprehensive and challenging goals for student learning.
Clear and coherent curriculum and instruction that connects standards and assessments.
Implement and coordinate NGSS science and engineering practices, crosscutting concepts and core ideas and principles.

Performance and practice become the measure of assessments of student performance.

EDUCATIONAL FRAMEWORK

NGSS Goals and Perspectives: "Expanding and enriching the teaching and learning of science.
 When students engage in scientific practices, activities become the basis for learning about experiments, data and evidence, social discourse and argumentation, models and tools, and mathematics and for developing the ability to evaluate knowledge claims, conduct empirical investigations, and develop explanations." (Bybee, Translating the NGSS for classroom instruction p. 41)

Cognitive Abilities
The development of logical, rational and critical thinking people originates from the development of a person’s cognitive abilities and their personal attributes as loving and lovable people in society. Learning science lends well to the development of the social, analytical and decision-making cognitive abilities of each individual.

Cognitive abilities are independent of subject-based models of learning.  Cognition is an innate human quality that can be improved upon through experiencing a diversity of learning experiences, while still progressing toward achievable learning outcomes and human development.  Education goals, curriculum and classroom instruction can be tailored outside the constraints of finite subject matter and theories.  Learning outcomes that yield progressive development of cognitive abilities is a true measure of education in our schools.

Curriculum is a guide helping to facilitate learning experiences for students in schools.  Its implementation, as a means for instruction, becomes the fundamental and front line exposure for students.  It inspires and challenges them by utilizing their understanding and critical thinking to solve problems. 

Curriculum based upon subject matter provides a level of coherence in education models, but it is not the defining outcome for our students.  Growth in cognitive abilities is the focus of teachers’ pedagogy put forth in our schools.  This growth is the prime motivation behind the creation of learning experiences for our students.


This cognitive-based model for education parallels with the belief that to know science is to do science. It is not the memorization or regurgitation of fact, figures and theories, but the application of knowledge through experience that captures meaning for students.  Subject-based models for learning miss the essence of why we learn in the first place.  We learn because we believe that it is worth to know.  If an educator commits to learning through experiences then this will provide students with meaningful opportunities to engage and to be inspired.