Saturday, May 21, 2016

The Water Bottle Rocket Project

The pursuit of cognitive abilities

Each year students in my physical science classes at Streamwood High School utilize a Pitsco Water Bottle Rocket launcher to culminate a unit in physics on kinematics. Launching water bottle rockets provide great opportunities for students to apply knowledge and understanding in physics and critically assess the motion of moving objects.

Students’ critical thinking skills are tested as they take on the challenge of investigating how chosen fin designs will impact the flight performance of water bottle rockets.  This design challenge allows students to creatively influence the engineering of rockets.  It is a curriculum initiative that is not only engaging with the students both physically and emotionally, but it also positively influences their intrinsic motivation to learn.

This project allows students to develop their own brainstorm ideas, work cooperatively with fellow students to bring to fruition the testing of experimental designs and take pride in efforts put forth to solve problems.  Students are able to evaluate experimental observations, diagnose evidence in support of their hypothesis and eventually make judgement as to the superiority of one fin design over another.

I believe that a project such as the one detailed above is the means by which teachers can introduce to their students a curriculum focused upon cognitive abilities.  Students are given time to think about the process of investigation, critically assess the methodology employed in testing and keeping in mind why they are pursuing these goals that merit their efforts.

Roger Schank, Professor Emeritus and founder of the renowned Institute for the Learning Science at Northwestern University, writes in his book Teaching Minds,Intelligence can be enhanced by practicing the cognitive processes that are the basis of intelligent behavior and intelligent reasoning.”  He continues this descriptive venue by further writing,Intelligence is the ability to diagnose well, to plan well, and to be understand what causes what.  To do this one must be able to reassess one’s belief system when new evidence is presented and one must be able to explain one’s reasoning clearly to those who ask.  And, one must have a knowledge base of relevant information to draw upon.”

Twenty first century learning is about meeting and improving the mindset students bring into the classroom. Students become good at performing these cognitive processes which are life skills. The fundamental cognitive processes such as, diagnoses, causation, planning, prediction and judgement need to be mastered.  Therefore, a teacher’s mission should be to facilitate repeated opportunities in school helping students develop cognitive abilities and skills within each student and increasing their abilities to make evidence-based judgement that are supported by experimentation and validate hypotheses.  These are cognitive abilities that evolve into essential life skills.

Tuesday, March 29, 2016

A 21st Century Spring is here!

Spring is here and the end is near! Yes that is how I feel when it comes to school and getting to the finish line and wrapping this school year up.  With 70 to 80 percent of the curriculum having now been employed in the classroom, I can take a long retrospective view of what has been achieved this year and begin to rationalize the legitimacy of implementing a models-based approach to learning.

For decades, as an educator, my thinking has evolved with respect to “best practice” and the means to produce the most effective learning environment for my students. Since my inaugural day, as a certified high school teacher, I have researched and implemented progressive curricular reforms addressing the urgency to meet diverse educational needs of students.

Since the mid 1990’s, I have developed a legacy of educational initiatives reflecting advocated reform measures in science education.  Each passing decade has brought more strident approaches to learning based upon experiences that students bring with them into the classroom and acknowledging new learning models developed from research-based educational psychology.

As a new science teacher, back in the 1990’s,  my focus was upon getting the tools of learning (labs, scientific probes and conceptually-based models) into the hands of students in the science classroom. Hands-on experiences for students was the battle cry for teachers on the frontlines of science education.  Long hours were put in to the development and orchestration of science labs helping to make concepts more concrete for students. Less textbook memorization, less lecture presentations, and more hands-on experiences for students in science was the progressive way to teach science.

At the end of the 20th century and into the beginning of the 21st century inquiry-based models for learning science was ushered into the science curriculum.  This new emphasis in science education stressed a pedagogy of getting students more intrinsically involved with the process of doing science, asking questions and exploring outcomes in greater depth.  Inquiry-based learning defined the progressive educational initiatives put forth by science teachers across America.  National Science Foundation’s development of new standards for learning science was held up as a guidepost helping teachers bring forth learning models requiring deeper thinking and increased motivation to understand science as a process and not as merely memorized facts.  Students realized that science is both a dynamic process and an evidence-based endeavor.

Project Based Models of Learning (PBL) began to surface, with vigor, as the first decade of the new century unfolded. Citing the development and establishment of Next Generation Science Standards along with the need to educate students to be critical thinkers and problem-solvers; the focus has turned to increasing students’ ability to learn, gather and analyze information, work cooperatively and present rational evidence-based arguments regarding findings.  This is an education model that is not only cross-disciplinary, but requires the utilization of multiple talents, abilities and skills.  It is a holistic approach to achieving learning outcomes that help learners adapt and be successful when dealing with changing conditions that bring forth new challenges to deal with in their lives.

Science educators are a pragmatic lot.  We recognize the education needs of our students yet we are diligent in the development of “best practices” which are research-based and that lend well to the diversity of learning we find embedded in our classrooms.  Upon reflection, after 7 months of working to increase learning in the science classroom, I am more convinced than ever of the need to transform how students learn into problem solving ventures.  

I find that when doing projects such as optimizing engineering designs or projects related to the improving the quality of soil mediums, or projects related to understanding carbon dioxide’s contribution to the warming of the atmosphere, students show greater motivation for learning and exhibit a deeper understanding of concepts in science.

 PBL models for science education is the progressive venue that science teachers can utilize to develop effective and meaningful learning opportunities for their students, while addressing multiple challenges we now face in the classroom.  This new model for science education gives teachers a great opportunity, as professionals, to remain viable as facilitators and providers of projects for teams of students to succeed within our schools in the 21st century.  

Friday, March 11, 2016


The Physics Science Classroom

innovation, creativity and inspiration


Since Monday my physics students have begun working on a new engineering design project that will culminate in independent research, new experimental methodologies and group presentations of their results among peers.
This learning opportunity, for physics students, provides the venue by which they can utilize their knowledge and understanding to solve real-world problems.  The open-ended format of this challenge allows students to innovate and be creative in their approach to tackling problems and offering solutions.
The Pitsco Torsion and Trebuchet Catapult kits help to provide the context for this investigative process.  Students apply concepts that they have learned with respect to motion, force and energy and fashion relationships expressed within factors that contribute to the dynamics of motion.  The ultimate challenge for students is to maximize the performance of their catapult with respect to clearly defined parameters.
Students are given a free-hand in what they plan to investigate, how the investigation will be performed, what factor will be tested and how will the data be assessed.  It is a time for students to clearly express deep understanding of the physics that they have learned and to develop the abilities to fully express themselves as competent scientific investigators.
A few other teams of students are researching wind turbine blades that will be attached to Pitsco Wind Turbines that are constructed in class.  Energy conservation in the residential home is another line of research that some teams are pursing.  This is a time for students to put to the test their abilities and to embrace the relevance and rigor of the scientific process.
In this project I am stressing quality over quantity and I have high hopes in witnessing substantial growth in their abilities to produce quality research and to present their findings at a high level of proficiency.  :)

                                          Students determine which independent variable
                                          will be investigated to maximize performance of the catapult.

                                         Students collaborate on different aspects of the construction
                                         and planning process for this scientific investigation.

                                         Students perform pre-lab analysis of the catapult
                                          and document their experimental design methodology
                                          along with writing a hypothesis for this investigation.

                                          The Pitsco Trebuchet and Torsion Catapults
                                           are readied for testing as students finish construction
                                           and begin their investigation into relationships
                                            between independent variables and the resulting
                                            dependent variable outcomes.

                                            The testing has already begun for teams of students 
                                             researching and designing new wind turbine blades.

                                             Blade design is the focus of this investigation
                                              as students attempt to optimize electrical energy
                                              production from the operation of Pitsco Wind Turbines
                                              in the science classroom.

Students begin to test the independent variable
from which they constructed an experimental hypothesis.
The catapult are utilized as an experimental apparatus for the testing of mass and applied tension.

Newly constructed Pitsco catapults made ready for launch!

An electric fan is employed to create a consistent stream of air striking the wind turbine.

Wind turbine blades are fashioned out of balsa wood.

Pitsco Wind Turbines are utilized to test the performance of new wind turbine blade designs

Sunday, February 28, 2016


In Mr.  Reiva’s junior/senior physics classes, students conduct a scientific investigation into the effects of carbon dioxide gas upon the heating of the Earth’s atmosphere.  This investigation is designed to confirm the effect of increased concentration of carbon dioxide gas in the atmosphere and the ability of this gas to absorb and store radiant energy from the sun.

In physics class, students have learned about the transfer of energy into closed systems and also the process of transforming energy from one form to another within the system.  Students utilize their understanding of the flow of energies and quantitatively assess energy transfer mechanisms that exist with respect to the accumulation of greenhouse gases in the Earth’s atmosphere.

Students use newly designed and constructed experimental apparatus to help improve the efficiency of the transfer of energy from radiant energy produced by a light bulb into the kinetic energy of gaseous molecules housed in a 2 liter plastic bottles.

Time spent on brainstorming ideas for original experimental apparatus designs eventually leads to the beginning of the construction process.   Students utilize material resources from the physics science classroom and build their experimental apparatus.

The testing begins with students placing a 2 liter bottle housing an atmosphere 1800ml of air and 200 ml of liquid water.  The designed experimental apparatus helps direct radiant energy into the bottle and atmosphere with greater efficiency.

Ideas for original experimental apparatus are brought into use as quantities of air and quantities of carbon dioxide are tested for their heat absorption capability.

Teams of students, work together, will not only create an experimental procedure using their experimental apparatus, but also study the effects that carbon dioxide has upon the absorption of radiant energy.

The rate of the rise in temperature of the atmosphere within the bottle system is recorded as part of the experimental process.  The resulting data collected on temperature with respect to time will be graphed and statistically assessed to determine a relationship.

Students determine the validity of their hypothesis on the effects of carbon dioxide in the atmosphere by critically assessing the relationship between the physical composition of gases and their ability to absorb radiant energy.  This radiant energy is stored within the system as vibrational kinetic energy of gas molecules.

Students, working on project-based scientific research, present their findings to their peers in the physics science classroom.

This team of students produced evidence of the rate of heating of carbon dioxide gas of over 100 percent greater than a similar volume of air.

These students utilized their newly designed and constructed experimental apparatus that helped to increase the efficiency of radiant energy transfer into both the air and carbon dioxide gases.

Monday, February 15, 2016

Model-Based Science Teaching
in the Science Classroom

Personal attributes qualifying me as a science teacher reflect upon my students’ attitudes toward learning science.  It is a natural cause-and-effect that spontaneously develops from my relationship with students in my classroom.  How learning is modeled in the science classroom is critical to the development of students’ perception of the world that they live in and their place in this world.

Purpose and perseverance in the science classroom stem from a teachers’ effort to provide their students with inquiry-driven learning experiences and effective modeling creating an explanatory framework in sync with human thought processes. My goal, as a science educator, is for students to not only care about what they learn, but to also work to better understand their own learning process that they experience every day of their lives.

Purpose is innate to intrinsic motivation.  It is an out crop of constructed models of learning created by teachers and producing engaged classrooms.  An engaged classroom has high attention, high commitment, an intrinsic driving force for learning and a passion to create!  Some of the most important factors that comprise Model-Based Science Teaching (MBST) are imagery to anchor ideas within a mind-set, scientific inquiry relying on rational and logical thought and the creation of products expressing learning outcomes.

Differentiation of science curriculum create models of learning giving students choice in their own learning and this lends to outcomes that are long-lasting and more meaningful.  Also, creating familiar imagery is crucial to student-developed models of the world.  Imagery including pictures, presentations, graphs and videos have a tremendous cognitive effect upon thinking and learning. Applying this with traditional reading assignments, required vocabulary and mathematical equations in science education produce powerful models by which students learn.

Inquiry in the classroom, including engineering design projects, hands-on inquiry-based science labs and virtual interactive computerized models of inquiry, are critical factors that positively contribute to the success of MBST in the science classroom.  Learning in the classroom is tied to imagery in profound ways.  It provides the means by which learning models can deliver relevancy and rigor that our children need in school as they work to become productive members of our society. A learning environment that lends not only to how people learn, but provide choice as a meaningful part of this learning process, is well-suited to the education needed in the 21st century.

Sunday, February 07, 2016

Fight Boredom
Stop Random Acts of Excellence
Provide Intellectual Challenges Every day!

Albert Einstein once said, “Strive not to be a success, but rather to be of value.”  I believe I hear a similar chorus coming from my students in the science classroom.  For them to think and to be curious are not mutually exclusive. They long for opportunities to be able to express academic effort and achievement with some level of creativity and innovative thought.

Intellectual challenges, taxing students’ ability to perform and tied to their understanding, is fundamental to the educational opportunities provided by schools that are committed to delivering acts of excellence and increased motivation in learning.

How do you create learning experiences in the classroom for students who probe for meaning and understanding in a universe that acts upon their lives?  How is this a motivating experience for these young learners?  Get them to build cars! Get them to realize the essence of the physics of electric cars.  Show them existing and future technologies of electric cars, then let their imaginations run wild!

Students realizing and capitalizing upon their skills and abilities as problem solvers and innovators can construct and test radial new electric car designs that help them to emulate the physics impacting their lives.  To be motivated to want to know for knowing sake is what creates value within the curious minds of our students.  Engineering challenges, like the Electric Car Project within the science curriculum, plants seeds of value within creative minds and leads to students’ academic success, while building character, providing long-lasting influence and is considered relevant to their lives. 

Sunday, January 24, 2016

Optimal Experience

It is by no small measure to say that the most important aspect of teaching is to create a learning environment that is most conducive to students’ interests and abilities.  The goal in education is to create an optimal experience for students in the classroom that includes a sense of autonomy, exhilaration and enjoyment. 

A measure of the competency of a teacher’s pedagogy is evident by the ability to create an engaging and enjoyable balance between boredom on one hand and anxiety on the other. Performance-based engineering challenges help develop innovative learning experiences that stretch the minds of students instilling a sense of mastery, happiness and satisfaction, while delivering goal-oriented problems to solve. The challenge for teachers is to utilize their own personal talents along with classroom resources and go forth and capitalize upon the conviction that engaged students are learned students!

Ralph Waldo Emerson once said, “We are always getting to live, but never living.”   Education without the possibility to use what we know to solve problems and help people becomes an unfulfilled gesture. In a coordinated and systematic manner students, engaged in engineering-based projects, can unleash their skills and abilities using their knowledge and understanding to achieve performance-based results. This experience helps define a person’s character, ambition, and capability.

Engineering prototypes like a Hovercrafts, Elastic Energy Prop Racers or Catapults among a list of many similar designs, will open the doors of innovation and creativity for students.  Students develop a more personal and deeper sense of control over the outcome of their involvement in science.  Working on these prototype designs require a high level of task orientation and concentration.  The significant investment in classroom time for these projects and the benefits, realized through increased student commitment, greater sense of self-efficacy and increased academic performance, all contribute to huge dividends in learning.

Investigations into the concepts of speed, acceleration, force and energy of Hovercrafts in motion can lead to significant comprehension of scientific principles and applications into the dynamics of motion.  These scientific inquiries are the fodder for further questions and experimentation.  To apply concepts in science to real-world experience is to truly exhibit learning.  To be successful in school it is important that students have access to these types of exciting challenges and experiences.  The feedback between peers and between the teacher and students is immediate as these projects support deep personal involvement fueled by a sense of achievement of clearly stated goals and expectations.

Students made comments on their efforts to complete the project. Jessica says, “The best part was when the hovercraft actually moved!”  She also said, “Communications was built when we had to figure out how to hold everything while the glue dried and also when we figured out how to make the propeller spin.” Jordan commented on his involvement on the prototype design.  He said, “The most rewarding aspect is the improvement of force on the model.” In both cases these students reflect upon some of the challenging aspects of the project and the need to solve problems and work on solutions.  Overcomes her frustrations Bella says, “Assembling the Hovercraft was pretty interesting, though it was aggravating.”

An optimal experience in science education always provide a challenging situation for students to surmount, but at the same time it dictates the course of events. Students utilize resources and knowledge in a focused effort to solve a problem.  This is the essence of learning in the 21st century science classroom.