Followers

Sunday, March 16, 2014




The divided classroom doing science

The third quarter of the school year begins with splitting the class of students down the middle. The result being is the boys on one side of the room and girls on the other side.  It requires a level of directness from the teacher, but in the end the class settles along lines of gender.  This provides for an opportunity, during this school year, to do things different.  It is an opportunity to get students to further embrace the rigor and relevance when doing science and to value what is accomplished in the classroom.

The boys begin by prototyping mechanically driven cars, designing new innovations and testing performance outcomes.  The girls work on implementing research into the growth of organic herbs and vegetables looking for ways to maximize outputs.  These learning outcomes, aligned for all of the students, help develop their abilities to work cooperatively, think critically, study concepts in science and creatively imagine outcomes as a result of their increased understanding and experience.  These projects are bold educational initiatives that give students more autonomy in the science classroom along with opportunities to increase their self-efficacy as learners in the 21st century.

Providing motivating factors that get students engaged as active learners becomes a central emphasis in the science curriculum.  The goal is to create a learning environment where students take ownership in doing science, which results in an enhanced learning experience.  The project outcomes are clearly defined and challenging for the students.  It provides them with the means by which problem-solving methods are cooperatively showcased and shared.

Working in teams, the girls define new experimental designs that investigate independent variables necessary to stimulate and enhance the growth of plants.  Students work toward the goal of increasing the growth and vitality of organic herbs and vegetables.  The clarity of the outcomes that need to be accomplished helps students to focus upon both the physical resources needed and their own capacity to solve problems.  With nearly a school year of experience working with growing plants and producing organic fertilizers, these students come well prepared to initiate their own inquiry-based research.  It is the culminating effort by students supported by a year of study in both areas of physics and chemistry.


 
 

 
 
 

The boys continue their investigative process of building and testing mechanically powered vehicles. When building working prototype car models from material provided by engineering-based science resources, these students utilize their skills and abilities to think critically and creatively while working cooperatively in teams to solve problems.  The challenge to build, test and analyze the car performance provides the means by which students learn science.  Students work toward accomplishing performance based outcomes, and they are focused and engaged in a learning process that is ultimately visualized as functioning models of cars.



 
 
 
 
 

No comments: