Followers

Loading...

Tuesday, March 29, 2016





A 21st Century Spring is here!

Spring is here and the end is near! Yes that is how I feel when it comes to school and getting to the finish line and wrapping this school year up.  With 70 to 80 percent of the curriculum having now been employed in the classroom, I can take a long retrospective view of what has been achieved this year and begin to rationalize the legitimacy of implementing a models-based approach to learning.

For decades, as an educator, my thinking has evolved with respect to “best practice” and the means to produce the most effective learning environment for my students. Since my inaugural day, as a certified high school teacher, I have researched and implemented progressive curricular reforms addressing the urgency to meet diverse educational needs of students.

Since the mid 1990’s, I have developed a legacy of educational initiatives reflecting advocated reform measures in science education.  Each passing decade has brought more strident approaches to learning based upon experiences that students bring with them into the classroom and acknowledging new learning models developed from research-based educational psychology.

As a new science teacher, back in the 1990’s,  my focus was upon getting the tools of learning (labs, scientific probes and conceptually-based models) into the hands of students in the science classroom. Hands-on experiences for students was the battle cry for teachers on the frontlines of science education.  Long hours were put in to the development and orchestration of science labs helping to make concepts more concrete for students. Less textbook memorization, less lecture presentations, and more hands-on experiences for students in science was the progressive way to teach science.

At the end of the 20th century and into the beginning of the 21st century inquiry-based models for learning science was ushered into the science curriculum.  This new emphasis in science education stressed a pedagogy of getting students more intrinsically involved with the process of doing science, asking questions and exploring outcomes in greater depth.  Inquiry-based learning defined the progressive educational initiatives put forth by science teachers across America.  National Science Foundation’s development of new standards for learning science was held up as a guidepost helping teachers bring forth learning models requiring deeper thinking and increased motivation to understand science as a process and not as merely memorized facts.  Students realized that science is both a dynamic process and an evidence-based endeavor.

Project Based Models of Learning (PBL) began to surface, with vigor, as the first decade of the new century unfolded. Citing the development and establishment of Next Generation Science Standards along with the need to educate students to be critical thinkers and problem-solvers; the focus has turned to increasing students’ ability to learn, gather and analyze information, work cooperatively and present rational evidence-based arguments regarding findings.  This is an education model that is not only cross-disciplinary, but requires the utilization of multiple talents, abilities and skills.  It is a holistic approach to achieving learning outcomes that help learners adapt and be successful when dealing with changing conditions that bring forth new challenges to deal with in their lives.

Science educators are a pragmatic lot.  We recognize the education needs of our students yet we are diligent in the development of “best practices” which are research-based and that lend well to the diversity of learning we find embedded in our classrooms.  Upon reflection, after 7 months of working to increase learning in the science classroom, I am more convinced than ever of the need to transform how students learn into problem solving ventures.  

I find that when doing projects such as optimizing engineering designs or projects related to the improving the quality of soil mediums, or projects related to understanding carbon dioxide’s contribution to the warming of the atmosphere, students show greater motivation for learning and exhibit a deeper understanding of concepts in science.

 PBL models for science education is the progressive venue that science teachers can utilize to develop effective and meaningful learning opportunities for their students, while addressing multiple challenges we now face in the classroom.  This new model for science education gives teachers a great opportunity, as professionals, to remain viable as facilitators and providers of projects for teams of students to succeed within our schools in the 21st century.  




Friday, March 11, 2016



 

The Physics Science Classroom

innovation, creativity and inspiration

 

Since Monday my physics students have begun working on a new engineering design project that will culminate in independent research, new experimental methodologies and group presentations of their results among peers.
This learning opportunity, for physics students, provides the venue by which they can utilize their knowledge and understanding to solve real-world problems.  The open-ended format of this challenge allows students to innovate and be creative in their approach to tackling problems and offering solutions.
The Pitsco Torsion and Trebuchet Catapult kits help to provide the context for this investigative process.  Students apply concepts that they have learned with respect to motion, force and energy and fashion relationships expressed within factors that contribute to the dynamics of motion.  The ultimate challenge for students is to maximize the performance of their catapult with respect to clearly defined parameters.
Students are given a free-hand in what they plan to investigate, how the investigation will be performed, what factor will be tested and how will the data be assessed.  It is a time for students to clearly express deep understanding of the physics that they have learned and to develop the abilities to fully express themselves as competent scientific investigators.
A few other teams of students are researching wind turbine blades that will be attached to Pitsco Wind Turbines that are constructed in class.  Energy conservation in the residential home is another line of research that some teams are pursing.  This is a time for students to put to the test their abilities and to embrace the relevance and rigor of the scientific process.
In this project I am stressing quality over quantity and I have high hopes in witnessing substantial growth in their abilities to produce quality research and to present their findings at a high level of proficiency.  :)


                                          
                                          Students determine which independent variable
                                          will be investigated to maximize performance of the catapult.




                                         Students collaborate on different aspects of the construction
                                         and planning process for this scientific investigation.



                                         Students perform pre-lab analysis of the catapult
                                          and document their experimental design methodology
                                          along with writing a hypothesis for this investigation.





                                          The Pitsco Trebuchet and Torsion Catapults
                                           are readied for testing as students finish construction
                                           and begin their investigation into relationships
                                            between independent variables and the resulting
                                            dependent variable outcomes.





                                            The testing has already begun for teams of students 
                                             researching and designing new wind turbine blades.

                                             Blade design is the focus of this investigation
                                              as students attempt to optimize electrical energy
                                              production from the operation of Pitsco Wind Turbines
                                              in the science classroom.








Students begin to test the independent variable
from which they constructed an experimental hypothesis.
The catapult are utilized as an experimental apparatus for the testing of mass and applied tension.






Newly constructed Pitsco catapults made ready for launch!



An electric fan is employed to create a consistent stream of air striking the wind turbine.
  

Wind turbine blades are fashioned out of balsa wood.



Pitsco Wind Turbines are utilized to test the performance of new wind turbine blade designs