Followers

Loading...

Thursday, March 27, 2014




IEARN and the Collaborative Effort to Feed the Hungry

By Greg Reiva

As long as I can remember students in my science classes have always sought the attention that goes along with making friends, being a part of a group or a club and expressing what they believe in as individuals.  This is what young people do as they build their self-confidence, become more autonomous and expressing the values of what they believe in.

For high school students these relationships between peers dominate their lives and it defines the environment in school.  Sometimes, it is these relationships, alone, that are the prime determinant as to whether students are motivated in school and decide if they participate or not in the learning going on while in class. Their connections to friends or networks of interesting people have never played a more dramatic influence in the lives of youth than it does today with access to multiple sources of technology and many avenues of social media.

I got involved with the iEARN System (International Education and Resource Network) as a means to tap into students’ natural tendencies to explore and foster new relationships.  As an educator I find that providing the opportunity for students to collaborate and to solve real-world problems is the most meaningful thing that a teacher can offer to students.  The iEARN System delivers a world of needed opportunities for students and it lends to the development of many important personal attributes such as openness to new ideas, effective communication skills, critical thinking skills, creativity and intellectual curiosity.  At the core of student performance is their intrinsic motivation to learn.  It is based upon factors such as challenging curriculum, goal oriented achievement, positive feedback, opportunities to try and fail and try again and taking the opportunity to showcase their results to their peers, teachers and members of the community.

 

The Hunger Project, facilitated by Larry Levine of Kidscanmakeadifference.org and embraced by teacher Marzieh Abedi and her high school Hunger Warriors students of Tehran, Iran are examples of a collaborative process where students are motivated to solve problems.  Sophomore female students in my physical science classes, at Streamwood High School, collaborated with seven Iranian students in a joint mission to raise awareness and help fight hunger in their communities. The goal is to take action helping to alleviate some of the problems that prevent families from gaining access to proper nutrition.  It is a noble effort by the students and it awakens their intrinsic motivation to want to work toward making a difference in peoples’ lives in their own community.
 
 
Students in Iran designed and implemented a food festival that provided community members the opportunity to learn about the issue of hunger becoming involved in the purchase of home-made food items.  This contributes to helping solve the problem of hunger in Tehran by getting members of the community active in a united effort.  At the same time students at Streamwood High School continue to grow healthy herbs and vegetables in the science classroom. This nutrient-rich organic produce will be sold at a farmers market.  Money earned will be donated to the community local food shelf.  These students have spent time and effort researching and experimenting to solve the problem of growing sustainable organic herbs and vegetables.  They have discovered that urban farming is a viable solution to the problem of reducing hunger in their community.  These innovative groups of students from opposite sides of the planet share the same goals and they hold common values with respect to their commitment to helping people.  This collaborative effort of sharing ideas, resources, and providing effort to reach each other’s goals is part of a noble experiment that I call Earth Stewardship.
 
 
 
 

During the food festival in Tehran the Iranian students shared with their peers the ideas, pictures and brochure designed by the collaborating Americans.  The Americans are utilizing the ideas and food festival format, designed by the Iranians, to create their own food festival in Streamwood and showcase their organic farm produce for the community.  The ideas and friendships developed during the project flow freely between each country and it is a heart-warming experience for students to connect with peers across the world on such important issues like hunger.
 


Long-term sustained efforts by students, working on projects related to hunger, environmental pollution or social awareness, are now defining what learning is in the 21st century.  Educational environments dictated by content and test-driven means of learning are being rejected and replaced by project-based models of learning.

The Next Generation Science Standards and the Common Core Curriculum are setting the stage for the emergence of performance-based educational methodologies.  World-wide these new and innovative means, designed to deliver learning opportunities for our children, are taking hold and reshaping how we define what is now considered excellence in the classroom.

This new way of learning challenges traditional held beliefs of how students learn.  It redesigns the classroom experience and ignites the intellectual curiosity of the entire learning community.  Rigor and relevance in the classroom looks more like problem-solving challenges and collaborative experience with students from throughout the world.

 
 

Delivering rigor and relevance to our students in our schools is being achieved by the collaborative and problem-solving nature of projects-based learning.  This is the beginning of an educational renaissance that is sweeping the planet.  Throughout the world teachers and students are embracing international collaboration to help students develop relationships, connect with peers, share experiences and work toward making a better life for everyone on the Earth.

 

Sunday, March 16, 2014




The divided classroom doing science

The third quarter of the school year begins with splitting the class of students down the middle. The result being is the boys on one side of the room and girls on the other side.  It requires a level of directness from the teacher, but in the end the class settles along lines of gender.  This provides for an opportunity, during this school year, to do things different.  It is an opportunity to get students to further embrace the rigor and relevance when doing science and to value what is accomplished in the classroom.

The boys begin by prototyping mechanically driven cars, designing new innovations and testing performance outcomes.  The girls work on implementing research into the growth of organic herbs and vegetables looking for ways to maximize outputs.  These learning outcomes, aligned for all of the students, help develop their abilities to work cooperatively, think critically, study concepts in science and creatively imagine outcomes as a result of their increased understanding and experience.  These projects are bold educational initiatives that give students more autonomy in the science classroom along with opportunities to increase their self-efficacy as learners in the 21st century.

Providing motivating factors that get students engaged as active learners becomes a central emphasis in the science curriculum.  The goal is to create a learning environment where students take ownership in doing science, which results in an enhanced learning experience.  The project outcomes are clearly defined and challenging for the students.  It provides them with the means by which problem-solving methods are cooperatively showcased and shared.

Working in teams, the girls define new experimental designs that investigate independent variables necessary to stimulate and enhance the growth of plants.  Students work toward the goal of increasing the growth and vitality of organic herbs and vegetables.  The clarity of the outcomes that need to be accomplished helps students to focus upon both the physical resources needed and their own capacity to solve problems.  With nearly a school year of experience working with growing plants and producing organic fertilizers, these students come well prepared to initiate their own inquiry-based research.  It is the culminating effort by students supported by a year of study in both areas of physics and chemistry.


 
 

 
 
 

The boys continue their investigative process of building and testing mechanically powered vehicles. When building working prototype car models from material provided by engineering-based science resources, these students utilize their skills and abilities to think critically and creatively while working cooperatively in teams to solve problems.  The challenge to build, test and analyze the car performance provides the means by which students learn science.  Students work toward accomplishing performance based outcomes, and they are focused and engaged in a learning process that is ultimately visualized as functioning models of cars.